Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cancer Lett ; 501: 247-262, 2021 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-33186656

RESUMO

Autophagy is a critical survival factor for cancer cells, whereby it maintains cellular homeostasis by degrading damaged organelles and unwanted proteins and supports cellular biosynthesis in response to stress. Cancer cells, including hepatocellular carcinoma (HCC), are often situated in a hypoxic, nutrient-deprived and stressful microenvironment where tumor cells are yet still able to adapt and survive. However, the mechanism underlying this adaptation and survival is not well-defined. We report deficiency of the post-translational modification enzyme protein arginine N-methyltransferase 6 (PRMT6) in HCC to promote the induction of autophagy under oxygen/nutrient-derived and sorafenib drug-induced stress conditions. Enhanced autophagic flux in HCC cells negatively correlated with PRMT6 expression, with the catalytic domain of PRMT6 critically important in mediating these autophagic activities. Mechanistically, PRMT6 physically interacts and methylates BAG5 to enhance the degradation of its interacting partner HSC70, a well-known autophagy player. The therapeutic potential of targeting BAG5 using genetic approach to reverse tumorigenicity and sorafenib resistance mediated by PRMT6 deficiency in HCC is also demonstrated in an in vivo model. The clinical implications of these findings are highlighted by the inverse correlative expressions of PRMT6 and HSC70 in HCC tissues. Collectively, deficiency of PRMT6 induces autophagy to promote tumorigenicity and cell survival in hostile microenvironments of HCC tumors by regulating BAG5-associated HSC70 stability through post-translational methylation of BAG5. Targeting BAG5 may therefore be an attractive strategy in HCC treatment by suppressing autophagy and inducing HCC cell sensitivity to sorafenib for treatment.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Carcinoma Hepatocelular/patologia , Resistencia a Medicamentos Antineoplásicos , Proteínas de Choque Térmico HSC70/química , Neoplasias Hepáticas/patologia , Proteínas Nucleares/química , Proteínas Nucleares/metabolismo , Proteína-Arginina N-Metiltransferases/química , Proteína-Arginina N-Metiltransferases/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/química , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Autofagia , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Linhagem Celular Tumoral , Células Hep G2 , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Masculino , Metilação , Camundongos , Transplante de Neoplasias , Estabilidade Proteica , Genética Reversa , Sorafenibe/farmacologia
2.
Nucleic Acids Res ; 46(19): 10119-10131, 2018 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-30165463

RESUMO

The RING finger protein TRAIP protects genome integrity and its mutation causes Seckel syndrome. TRAIP encodes a nucleolar protein that migrates to UV-induced DNA lesions via a direct interaction with the DNA replication clamp PCNA. Thus far, mechanistically how UV mobilizes TRAIP from the nucleoli remains unknown. We found that PCNA binding is dispensable for the nucleolus-nucleoplasm shuttling of TRAIP following cell exposure to UV irradiation, and that its redistribution did not rely on the master DNA damage kinases ATM and ATR. Interestingly, I-PpoI-induced ribosomal DNA damage led to TRAIP exclusion from the nucleoli, raising the possibility that active ribosomal DNA transcription may underlie TRAIP retention in the nuclear sub-compartments. Accordingly, chemical inhibition of RNA polymerase I activity led to TRAIP diffusion into the nucleoplasm, and was coupled with marked reduction of DNA/RNA hybrids in the nucleoli, suggesting that TRAIP may be sequestered via binding to nucleic acid structures in the nucleoli. Consistently, cell pre-treatment with DNase/RNase effectively released TRAIP from the nucleoli. Taken together, our study defines a bipartite mechanism that drives TRAIP trafficking in response to UV damage, and highlights the nucleolus as a stress sensor that contributes to orchestrating DNA damage responses.


Assuntos
Nucléolo Celular/metabolismo , DNA Ribossômico/genética , RNA Polimerase I/genética , Transcrição Gênica , Ubiquitina-Proteína Ligases/genética , Proteínas Mutadas de Ataxia Telangiectasia/genética , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Benzotiazóis/farmacologia , Linhagem Celular Tumoral , Nucléolo Celular/efeitos da radiação , Nucléolo Celular/ultraestrutura , Dano ao DNA , DNA Ribossômico/metabolismo , Desoxirribonucleases/química , Nanismo/genética , Nanismo/metabolismo , Nanismo/patologia , Fácies , Regulação da Expressão Gênica , Células HeLa , Humanos , Microcefalia/genética , Microcefalia/metabolismo , Microcefalia/patologia , Naftiridinas/farmacologia , Osteoblastos/metabolismo , Osteoblastos/patologia , Osteoblastos/efeitos da radiação , Antígeno Nuclear de Célula em Proliferação/genética , Antígeno Nuclear de Célula em Proliferação/metabolismo , Transporte Proteico , RNA Polimerase I/antagonistas & inibidores , RNA Polimerase I/metabolismo , Ribonucleases/química , Ribossomos/genética , Ribossomos/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Raios Ultravioleta
3.
Behav Brain Funct ; 10(1): 29, 2014 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-25178928

RESUMO

BACKGROUND: Dyslexia is a polygenic developmental disorder characterized by difficulties in reading and spelling despite normal intelligence, educational backgrounds and perception. Increasing evidences indicated that dyslexia may share similar genetic mechanisms with other speech and language disorders. We proposed that stuttering candidate genes, DRD2 and SLC6A3, might be associated with dyslexia. METHODS AND RESULTS: The study was conducted in an unrelated Chinese cohort with 502 dyslexic cases and 522 healthy controls. In total, 23 Tag SNPs covering the two genes were selected for genotyping through Tagger program. Association analysis was performed on each SNP alone and in haplotypes. One SNP markers in DRD2 showed significant association with developmental dyslexia. CONCLUSION: These findings indicate that polymorphism of DRD2 gene may be a risk factor of developmental dyslexia in the Chinese population.


Assuntos
Povo Asiático/genética , Proteínas da Membrana Plasmática de Transporte de Dopamina/genética , Dislexia/genética , Predisposição Genética para Doença , Receptores de Dopamina D2/genética , Alelos , Criança , China , Feminino , Estudos de Associação Genética , Genótipo , Haplótipos , Humanos , Masculino , Polimorfismo de Nucleotídeo Único , Gagueira/genética
4.
Nat Struct Mol Biol ; 18(12): 1400-7, 2011 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-22101936

RESUMO

The mammalian shelterin component TPP1 has essential roles in telomere maintenance and, together with POT1, is required for the repression of DNA damage signaling at telomeres. Here we show that in Mus musculus, the E3 ubiquitin ligase Rnf8 localizes to uncapped telomeres and promotes the accumulation of DNA damage proteins 53Bp1 and γ-H2ax. In the absence of Rnf8, Tpp1 is unstable, resulting in telomere shortening and chromosome fusions through the alternative nonhomologous end-joining (A-NHEJ) repair pathway. The Rnf8 RING-finger domain is essential for Tpp1 stability and retention at telomeres. Rnf8 physically interacts with Tpp1 to generate Ubc13-dependent Lys63 polyubiquitin chains that stabilize Tpp1 at telomeres. The conserved Tpp1 residue Lys233 is important for Rnf8-mediated Tpp1 ubiquitylation and localization to telomeres. Thus, Tpp1 is a newly identified substrate for Rnf8, indicating a previously unrecognized role for Rnf8 in telomere end protection.


Assuntos
Telômero/química , Ubiquitina-Proteína Ligases/fisiologia , Animais , Proteínas Cromossômicas não Histona/metabolismo , Cromossomos de Mamíferos/metabolismo , Dano ao DNA , Proteínas de Ligação a DNA/metabolismo , Histonas/metabolismo , Camundongos , Mapeamento de Interação de Proteínas , Estabilidade Proteica , Proteínas de Ligação a Telômeros , Proteína 1 de Ligação à Proteína Supressora de Tumor p53 , Ubiquitina-Proteína Ligases/análise , Ubiquitina-Proteína Ligases/química , Ubiquitinação
5.
Nucleus ; 1(6): 472-4, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-21327088

RESUMO

The mammalian interphase chromatin responds to DNA damages by altering the compactness of its architecture, thereby permitting local access of DNA repair machineries. Adding to the cellular strategies of chromatin remodeling following DNA damage, our recent work identified the 53BP1-EXPAND1 module in promoting chromatin dynamics in response to DNA double-strand breaks. Endowed with a nucleosome-binding PWWP domain, EXPAND1 tethers to the chromatin where it is involved in maintaining basal chromatin accessibility in unperturbed cells. Interestingly, through its direct interaction with the DNA damage mediator protein 53BP1, EXPAND1 accumulates at the damage-modified chromatin and triggers its further decondensation. These observations, together with the fact that EXPAND 1 promotes cell survival following DNA damage, suggest that the chromatin-bound factor may facilitate DNA repair by regulating the organization of chromatin structure.


Assuntos
Montagem e Desmontagem da Cromatina , Cromatina/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Montagem e Desmontagem da Cromatina/genética , Quebras de DNA de Cadeia Dupla , Reparo do DNA , Humanos , Estrutura Terciária de Proteína , Proteína 1 de Ligação à Proteína Supressora de Tumor p53
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...